- площадей правило
площаде́й пра́вило в аэродинамике: волновое сопротивление тонкого тела при нулевой подъёмной силе в транс- или сверхзвуковом потоке идеального газа определяется распределением S(x) площади поперечного сечения тела вдоль его оси и имеет то же значение, что и сопротивление тела вращения (эквивалентного тела), имеющего аналогичное распределение Sэкв(x) площади поперечного сечения. Волновое сопротивление тонкого тела можно вычислить, применяя импульсов теорему к некоторой (контрольной) поверхности, расположенной на достаточно большом расстоянии от него. На таких расстояниях поле течения, согласно правилу эквивалентности (см. Тонкого тела теория), не зависит от формы поперечного сечения тела, является осесимметричным и соответствует полю течения около эквивалентного тела вращения. Это и приводит в результате к П. п.
П. п. справедливо и для комбинации тонкого тела (фюзеляжа) с тонким крылом малого удлинения. При трансзвуковом обтекании это следует из принципа эквивалентности, который выполняется для конфигурации рассматриваемого типа, и Sэкв равна полной площади её поперечного сечения. При сверхзвуковых скоростях Sэкв вычисляется несколько иначе. Например, в случае осесимметричного фюзеляжа она определяется суммой Sэкв = Sф + Sкр, где Sф площадь поперечного сечения фюзеляжа, Sкр площадь проекции на поперечную плоскость сечения крыла плоскостью, составляющей угол Маха (см. Маха конус) с направлением набегающего потока.
Тела вращения, обладающие минимальным волновым сопротивлением при различных условиях имеют достаточно плавные обводы (см. Осесимметричное течение). Тогда из П. п. следует, что волновое сопротивление можно уменьшить путём обеспечения по возможности более гладкого и близкого к оптимальному распределения площадей поперечного сечения. Например, для комбинации «крыло фюзеляж» с этой целью в месте расположения крыла у фюзеляжа должно быть предусмотрено сужение, компенсирующее увеличение полной площади сечения за счёт крыла.
Экспериментальные данные подтверждают П. п. и оно успешно применяется при разработке компоновок летательных аппаратов для уменьшения их волнового сопротивления.
Литература:
Эшли X., Лэндал М., Аэродинамика крыльев и корпусов летательных аппаратов, пер. с англ., М., 1969.В. Н. Голубкин.
Энциклопедия «Авиация». - М.: Большая Российская Энциклопедия. Свищёв Г. Г.. 1998.