характеристическое уравнение
- характеристическое уравнение
характеристи́ческое уравне́ние. Во многих случаях физические процессы, происходящие в системах, описываются системой обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами, которая в достаточно общем случае может быть сведена к дифференциальному уравнению вида
[при F(t) ≡ 0 это уравнение называется однородным]. Здесь a1, b1 постоянные коэффициенты, выражающиеся, например, через аэродинамические коэффициенты; Z(t) неизвестная функция времени t; F(t) заданное, зависящее от времени внешнее возмущение. Если ввести обозначение di/dti = pi так, что diZ(t)/dti = piZ(t), то это уравнение можно переписать в виде L(p)Z(t) = S(p)F(t), где L(p) и S(p) некоторые многочлены степеней n и m соответственно. Полученный таким образом многочлен L(p) = pn + a1pn‑1 +
+ an-1p + an называется характеристическим многочленом (полиномом), а уравнение L(p) = 0 характеристическим уравнением (существуют и другие способы получения Х. у. см., например, ст. Передаточная функция). Корни Х. у. определяют вид решения линейного однородного дифференциального уравнения и тем самым тип собственного движения системы (периодические, затухающее и т. п.). Х. у. линейной системы не зависит от того, относительно какой из её переменных (например, скорость полёта или угол атаки при исследовании продольного движения) составляется дифференциальное уравнение и какие возмущающие и задающие воздействия в эту систему вводятся.
Необходимым и достаточным условием устойчивости решения системы обыкновенных линейных дифференциальных уравнений является отрицательность всех действительных частей корней Х. у. При этом оказывается, что положительность всех коэффициентов характеристического полинома является необходимым и достаточным условием устойчивости для систем первого и второго порядков и лишь необходимым условием устойчивости (обеспечивается отрицательность только вещественных корней) для систем третьего и более высоких порядков. Существуют различные способы исследования на основе Х. у. устойчивости систем, например метод построения областей устойчивости, алгебраические и частотные критерии. Х. у. широко используется при исследовании динамики полёта, устойчивости летательного аппарата и его управляемости.
Литература:
Попов Е. П., Динамика систем автоматического регулирования, М., 1954;
Понтрягин Л. С., Обыкновенные дифференциальные уравнения, 4 изд., М., 1974.
Ю. Б. Дубов.
Энциклопедия «Авиация». - М.: Большая Российская Энциклопедия.
Свищёв Г. Г..
1998.
Полезное
Смотреть что такое "характеристическое уравнение" в других словарях:
Характеристическое уравнение — Во многих случаях физические процессы, происходящие в системах, описываются системой обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами, которая в достаточно общем случае может быть сведена к дифференциальному уравнению … Энциклопедия техники
ХАРАКТЕРИСТИЧЕСКОЕ УРАВНЕНИЕ — алгебраическое уравнение видаОпределитель в этой формуле получается из определителя матрицы вычитанием величины x из диагональных элементов; он представляет собой многочлен относительно x и называется характеристическим многочленом … Большой Энциклопедический словарь
характеристическое уравнение — — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN characteristic equation … Справочник технического переводчика
характеристическое уравнение — алгебраическое уравнение вида . Определитель в этой формуле получается из определителя матрицы х из диагональных элементов; он представляет собой многочлен относительно х и называется характеристическим многочленом. * * * ХАРАКТЕРИСТИЧЕСКОЕ… … Энциклопедический словарь
характеристическое уравнение — būdingoji lygtis statusas T sritis automatika atitikmenys: angl. characteristic equation; performance equation vok. charakteristische Gleichung, f; Stammgleichung, f rus. характеристическое уравнение, n pranc. équation caractéristique, f … Automatikos terminų žodynas
характеристическое уравнение — būdingoji lygtis statusas T sritis fizika atitikmenys: angl. characteristic equation; performance equation vok. charakteristische Gleichung, f rus. характеристическое уравнение, n pranc. équation caractéristique, f … Fizikos terminų žodynas
Характеристическое уравнение — в математике, 1) Х. у. матрицы алгебраическое уравнение вида определитель, стоящий в левой части Х. у., получается из определителя матрицы (См. Матрица) А = ||aik||n1 вычитанием величины λ из диагональных… … Большая советская энциклопедия
характеристическое уравнение — характеристическое уравнение. Во многих случаях физические процессы, происходящие в системах, описываются системой обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами, которая в достаточно общем случае может быть сведена … Энциклопедия «Авиация»
ХАРАКТЕРИСТИЧЕСКОЕ УРАВНЕНИЕ — вековое уравнение, см. в ст. Характеристический многочлен … Математическая энциклопедия
Характеристическое уравнение — Характеристический многочлен это многочлен, определяющий собственные значения матрицы. Другое значение: Характеристический многочлен линейной рекурренты это многочлен . Содержание 1 Определение … Википедия