- механика разрушения
меха́ника разруше́ния раздел механики, в котором изучаются, используемые в летательных аппаратах конструкционные материалы и их способность сопротивляться разрушению под действием внешних сил при наличии усталостных трещин и различных технологических и эксплуатационных дефектов. Основые исследования в области М. р. посвящены разработке методов предотвращения разрушения материалов при эксплуатации. При решении задач в М. р. используется комплексный подход к проблеме разрушения, основанный на сочетании методов механики сплошных сред с методами экспериментальной и теоретической физики и химического металловедения, математической теории упругости и строительной механики. Поведение авиационной конструкции, повреждённой трещиной или имеющей производственный, (эксплуатационный) дефект типа трещины, обычно может быть разделено на две стадии: устойчивое развитие трещины под действием переменных нагрузок; окончательное разрушение (так называемым долом) конструкции при однократном нагружении. При этом задачами М. р. являются оценка скорости роста усталостной трещины и определение остаточной прочности, то есть определение разрушающей нагрузки для конструкции, повреждённой трещиной. В зависимости от свойств материалов и условий нагружения элементов авиационных конструкций различают хрупкое разрушение, характеризуемое относительно малой зоной пластической деформации в окрестности вершины развивающейся трещины, и квазихрупкое разрушение, характеризуемое более значительным размером зоны пластической деформации у вершины трещины. М. р., базирующаяся на результатах строгого математического анализа упругих напряжений и деформаций вблизи вершины трещины в случаях хрупкого и квазихрупкого разрушений, называют линейной М. р. Основной параметр, используемый в линейной М. р., коэффициент интенсивности напряжений Kc который является параметром аналитических выражений, описывающих напряжённо-деформированное состояние вблизи вершины трещины. Для случаев хрупкого и квазихрупкого разрушений состояние нестабильного роста трещины определяется критическими значениями коэффициента интенсивности напряжений ∆K, которые для элементов конструкций в зависимости от их размеров, свойств материалов и условий нагружения находятся опытным путём.
При устойчивом росте трещин в случае действия переменных нагрузок скорость роста усталостных трещин оказывается достаточно хорошо коррелированной с амплитудой ∆K. Параметры зависимости скорости роста трещин от ∆K являются характеристикой материала.
Для исследования трещиностойкости материала при значительных зонах пластической деформации состояние нестабильного роста трещин определяется на основании оценки размера раскрытия трещины в её вершине с использованием значений интегралов J, пропорциональных плотности высвобождаемой энергии пластической деформации при разрушении конструкции.
Результаты исследований, основанные на методах, предлагаемых М. р., используются на этапах проектирования и эксплуатации летательных аппаратов при решении задач, связанных с обеспечением остаточной прочности авиационных конструкций с учётом длительности роста усталостных трещин (см. также Эксплуатационная живучесть).
С. И. Галкин.
Энциклопедия «Авиация». - М.: Большая Российская Энциклопедия. Свищёв Г. Г.. 1998.